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Abstract
In Kitaigorodskij (1983) it was suggested that due to the breaking of wind waves in deep water the 
dissipation of wave energy is restricted to a range of wave numbers much higher than the wave numbers 
typical for the so called equilibrium range, or much higher than the peak wave number kp and peak frequency 
0)p. This prediction, similar to the prediction of the existence of dissipation subrange in KolmogorofTs 
three dimensional tubulence never before was properly verified for the obvious reasons: difficulties related 
to the measurements and interpretation of the random wave field properties at very high frequencies (or 
wave numbers). In this paper an attempt is made to summarize the results of recent field experiments 
(Leykin and Rozenberg, 1984, Tang and Shemdin, 1983, Birch and Ewing, 1986. Hansen et al., 1990, 
Banner et al., 1989, Banner, 1990 and some others) with the purpose to demonstrate that the rapid spectral 
Jail off needed for determination of the boundaries of dissipation subrange in wave number frequence 
domain, seems to be an intrinsic property of rather well-developed seas.

It is shown that in dissipation subrange the spectrum most likely has the form S(to) = ßg2co B — 0.025, 
g-gravity, and dissipation of energy is restricted to a range of frequencies in > d)K much higher than the 
frequencies of the dominant waves. The characteristics of the transition from rear high frequency parts and 
high wave number parts of wave spectra to the dissipation subrange are summarized, and the contradictions 
between different interpretation of wind speed dependence of radar back scatter measurements are also 
discussed.

S A. KITAIGORODSKI I 
Department of Earth & Planetary Sciences 

The Johns Hopkins University 
Baltimore, Maryland 21218

© Det Kongelige Danske Videnskabernes Selskab 1992 
Printed in Denmark by Special-Trykkeriet Viborg a-s 

ISSN 0023-3323 ISBN 87-7304-230-7



MfM 42 : 5 3

1. Introduction
Since the 1981 symposium on wave dynamics and radio probing of the ocean surface 
in Miami (proceedings were published in 1986 by Plenum Press) many interesting 
publications about the equilibrium spectra of wind waves appeared in oceanographic 
literature. Beginning with the work’s of Kitaigorodskii (1983) and Philips (1985), a 
great deal of attention was devoted to the explanation of the wind speed dependence 
of the rear face of the spectra of surface gravity waves, both by using either concepts 
of statistical equilibrium of the Kolmogoroffs type in weakly nonlinear surface gravi
ty wave field (Kitaigorodskii, 1983, Zakharov and Zaslavskii, 1982), or alternative 
model of the statistical equilibrium based on the balance of source terms (Phillips, 1985, 
Komen et al., 1984). The forms of the equilibrium spectra in these two models are not 
too different from each other (Kitaigorodskii, 1987), which make it difficult to distin
guish between the types of statistical equilibrium only on the basis of the information 
about the rear faces of the frequency and wave number spectra. This becomes even 
more evident, after recent work by Banner (1990), who put special attention to the 
probably underestimated before the important role of k-dependent type of angular dis
tribution of wave energy propagation in shaping rear faces of frequency wave spectras 
not far from its peak. This viewpoint was just briefly mentioned in Kitaigorodskii et 
al. (1975) (see footnotes on p. 114 in this paper), whereas Banner (1990) had attemp
ted to establish empirically the canonical form of wave spectra in the whole energy 
containing region of the two-dimensional wave spectra tp(k) = tp(k,0), (k = (k cos 0, 
k sin 0).

Contrary to asymptotic arguments of statistical equilibrium in weakly nonlinear field 
of surface gravity waves, which leads to wind dependence of tp(k,0) through the 
dependence of energy and action fluxes from wind speed (Kitaigorodskii, 1983, 1987), 
Banner (1990) formulated 2-D wave number spectral model using empirical form of 
directional frequency spectra of Donelan et al. (1985), with extrapolation of their tn < 3 
<0p, a)p-peak frequency to much higher wave numbers. Banner (1990) argues that the 
k‘4 form of the rear side of the tp(k,0) above the peak enhancement region is in 
agreement with latest observations, and that the broad directional distribution (inde
pendent of k/kp values, kp-peak wave number) occurs approximately only at k/kp > 
10. For smaller k/kp Banner’s (1990) model was able to demonstrate that the prescribed 
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spreading function according to Donelan et al. (1985), can easily explain two observed 
features in frequency spectra of ocean gravity waves, i.e. wind dependence in the region 
close to the peak (co/cop 3) and /razzh/zoz? from to ’ to C0'J form, whose typical frequency 
noticeably varies with top (!). However Banner’s (1990) model deals with relatively low 
wave numbers and does not consider high wave number tail (k/kp > 10), where dissipa
tion effects can be of primary importance according to Kitaigorodskii (1983) descrip
tion of the dissipation subrange. The latter approach has received some support in a 
recent paper by Hansen et al. (1990), where transition to CO’5 form in the frequency 
spectra was found to be consistent with transition to k’4 in high wave number region of 
lp(k)- The transition from wind dependent k’7/2 form of spatial spectrum tp(k) to k"4 
form, which according to Kitaigorodskii (1983) indicates the dissipation subrange, 
appears in the data of SWOP experiments (cf. recalculations of SWOP data in 
Kitaigorodskii (1984). To my knowledge this was long time the only dirtect evidence of 
occurrence of the more rapid spectral falloff in high wave number tail in wave 
number spectra. Of course the data which contains tp(k,0) spectra satisfying k‘4 form 
are much more numerous (Phillips, 1977). The latest among them seems to be 
Banner et al. (1989), recent stereophoto measurements of k'4 form in the range of 
short wavelengths 0,2-1.6 m which we will analyze later. The very question about the 
existence of the dissipation subrange is far from being only of academic interest — the 
radar backscattering wind dependence and wave number dependence can be ex
plained only by knowing the behaviour of high frequency and high wave number tails 
of the spectrum (see Wu, 1990). Data, used by Wu (1990), seems to indicate rather 
clearly that radar returns wind dependence is different for different wavelengths: for 
L and Lp bands (and lower wavelength) returns can be explained using the wind
dependent statistical equilibrium (Kitaigorodskii, 1983, Phillips, 1985), whereas the 
X and C bands (and shorter wavelengths) cannot be explained without the exist
ence of dissipation subrange with it’s practically k-independent contribution to the 
scattering cross section in radar return proportional to the slope spectra of gravity 
waves (Wu, 1990). indeed the dissipation subrange according to radar returns must 
be observed (or exist) at wave numbers much higher than those which were originally 
found by Phillips in 1958 (Phillips, 1958) and Phillips (1966). For example the data of 
Guinard et al. (1971), analysed recently by Wu (1990) in respect to the variations of 
the radar return with surface wave number, seems to locate the dissipation subrange 
in the range 12cm > X > 1,25cm. This appears to be a rather extreme conclusion; for 
example, the results of recent stereophotography indicating a k ’ form with broad 
angular distribution in the range of wave lengths 20-150cm, can be considered also as an 
evidence of dissipation subrange. Wu (1990) analysis seems to be rather in accord 
with Phillips (1987) assertion that the equilibrium range prevails for gravity wave 
components, where dissipation subrange exist only for shortest gravity and gravity-capillary 
wave components. Note also that in situ measurements used by Kitaigorodskii (1983) 
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and Phillips (1985) were limited to components no shorter than say 1-1.5m. Thus 
according to these authors, as well as Banner et al. (1989) it seems that the typical 
value of upper bound of dissipation subrange is 1-1.5 meter (!). However it must not 
be forgotten also that according to Kitaigorodskii (1983) analysis and Hansen et al. 
(1990) the typical transitional wave number kg and frequency O)g for the “beginning” 
of dissipation subrange in wave spectra depend both on wind speed and the stage of 
development (decrease of kg and (üg with wind speed, as well as with fetch or duration 
(cf. Fig. 5 in Hansen et al. (1990)). Thus we can expect that for young waves and not 
high wind speeds the dissipation “subrange” is moving to the “miscroscales” of 
shortest gravity ripples and capillary gravity waves, where for moderate and strong 
winds and rather well developed waves dissipation “subrange” can be observed in 
more wide ranges of wave numbers and frequencies higher than the peak values, but 
lower than the scales of gravity capillary ripples. Still the available information about 
transitional frequency 0)g according to Forristal (1981), Kaluna (1981), Kitaigorod
skii (1983), Hansen et al. (1990), doesn’t show a big variation in cog, whose typical 
value looks close to 4g/Ua(Ua — wind speed). The very fact that the dissipation 
subrange is characterized by power exponent 4, give rise to the attempts to charac
terized the surface geometry in equilibrium range, (with smaller exponents), by the use 
of fractal dimensions which in such case becomes both relevant and useful (Glazman, 
1988). It is interesting that the rapid spectral falloff needed for determination of the 
boundary of dissipation subrange seems to be an intrinsic property of relatively well 
developed sea. So according to fractal description of the sea surface the surface 
microscale h ~ lm (KolmogrofFs microscale) is in good agreement with the values of 
transitional w’ave number kg and frequency cog including those which appear indirectly 
in the Phillips (1985) and Banner et al. (1989) papers. Their results we’ll reanalyze, 
but it seems from above that it is instructive to establish the cortrespondence between 
Kitaigorodskii (1983) “transitional” scales and fractal model of the sea with its inner 
microscale h. We’ll not discuss this topic here, but instead we’ll turn our attention to 
the proof of very existence of the dissipation subrange in the experimental data (both 
old and recent), but especially those which were not available at time when our 
review paper (Kitaigorodskii, 1986) was written.

2. Statistical equilibrium, saturation and dissipation 
subrange in wind wave spectra

2.1. The rather complete description of the commonly used spectral characteristics of 
wave field which are either measurable or calculable can be found in the papers of 
Kitaigorodskii (1987) and Banner (1990). Both contain a good account of the spectral 
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description of random wind wave field. We briefly repeat here what in this respect 
will be needed for further discussions.

The Fourier series representation of the surface t,(x,t).

£(x , t) = (JJ exp {i (k , x - cot) dZr (k,co) = J d k J dco^æ exp {i (k x - cot)} (1)

{k — (k|,k2) = (k cos <f), k sin ({)) is wave number vector, co is frequency} is often used 
in the description of random wave field (in this case dZ^(k,æ) is Fourier-Stilties 
amplitude).

The symmetrical wave spectrum Es(k,co) defined as
Es (k, CO) — Eg (-k. -CO) = ^^kco ^k'a>'^ (2)

is the Fourier transform of the covariance B(r,t)

Es (k, co) = (27t) 3 f dr / dr B(r,r) {-i (kr - cor)} (3)

with normalization condition

= B (0,0) = J dk J dco Eg (k,co) (4)

and

B (r,x) = B (x +r, t, x, t) (5)

The reduced symmetrical (measurable) wave number spectres ips(k) and frequency 
spectra S(co) can be obtained by intergration over co and over k

Vs (k) = I dco Es (k,co) (6)

Ss (co) = J dk Es (k,co) (7)

lps(k)arises from frozen spatial image analysis and does not contain actual wave 
propagation information partitioning the wave energy equally to components 180° 
apart.

Note, (Kitaigorodskii, 1986) that

Ts (k) = |[F (k) + F(-k)] (8)

where the directiona 1 wave number spectrum F(k) is defined as

and Fi:-k) as

yF(k)ö(k-k') = (nk
0)

1 F(-k)ö(k-k') = (Tk(Tk)) (10)

where in ( 1)
= Bk 5 (co - 5) + Ö (co + Ö) (H)
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and random coefficients T]k+,Tlk~ are the amplitudes of free liear surface gravity waves 
propagating in the positive and negative direction of the vector k, and o satisfies the 
dispersion relationship for surface waves. That is why for a weakly nonlinear wave 
field the Fourier series representation (1) is a more natural tool for theoretical analy
sis than in studies of turbulent random fields. The directional wave number spectrum
F(k)

F (k) = 2 j Es (k, co) dco (12)
o

represents the actual wave number distribution of wave energy propagation. 
Among the often measurable spatial characteristics it is worthwhile to mention also 

one dimensional (transverse) spectra

(13)

(kr k2) dk (14)

and among the calculated reduced spectras the spectrum of wave number moduli, 
characterizing energy distribution over k regardless of the direction of wave propaga
tion defined as

X(k) = J Ts (k) dk = (15)

or the spectrum Fk averaged over all directions of wave propagation

(16)

It is evident from (8-16) that to calculate the reduced spatial spectras (13, 16) we need 
either a model for directional wave number spectras F(k), or the empirical descrip
tion of the whole 2-dimensional symmetrical spectra tps(k).

Now we’ll try to introduce the noncontroversial definitions of what is considered in 
the literature as ^z/ZZ^/wn spectra (or equilibrium range in wave spectra), saturation (or 
saturation range in wave spectra), and finally what we’ll call dissipation subrange in 
wind wave spectra.

2.2. The evolution of the directional wave number spectrum F(k, x, t) has been 
described by the so-called radiative transfer equation

(17)
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Here S;n(k), Sni (k) and Sdjss (k) are the source terms, representing the spectral distribu
tions of wind input, nonlinear interactions with other wave components and dissipa
tion through wave breaking and wave turbulence interactions (Kitaigorodskii, Lum
ley 1983). If for certain ranges of k(k,0)

T5F=a^+5gVF"° (18>
such a region of wave numbers can be called an equilibrium range of F(k), and 
corresponding form ofF(k) spectra in this region equilibrium spectra. In practice we 
of course met with the situation when in certain part of k domain

« S, where S = Sn_ + S. +S (19)

which means that this part of the spectrum is in quasy-equilibrium. The condition 
(19) seems to be fulfilled in fetch grwoth situation for major parts of rear faces of wind 
wave spectra, and that is why the similarity descriptions of wind wave development 
according to Kitaigorodskii scaling (Kitaigorodskii, 1960, and Pierson and Mos- 
cowitz, 1964) and description of parametric wave spectra according to Haselmann et al. 
(1976) are both applicable and successful in the predictions of the growth of wind 
wave field with fetch.

2.3. The most general analysis of equilibrium spectra of the type (18, 19) was done 
recently by Phillips (1985), who used the dimensional arguments in description of 
Sdiss and assumption about the equality by the order of magnitude of all source terms 
in (17). Later on, Banner (1990) prefer to rely on the pure empirically chosen canonial 
form of 2-D Xpfk) in the equilibrium range of lpsk (19), disagreeing partially both with 
Kitaigorodskii (1983) and Phillips (1985) descriptions of equilibrium conditions, and 
putting special attention to the role of k-dependent form of angular destribution of 
energy in equilibrium part o/lp^k). The fact that we must talk about an equilibrium not 
only with respect to k, but also to 0, i.e. above certain region k,0 in the spatial 
spectrum tps(k) was first pointet out in Kitaigorodskii et al (1975) in their discussions 
of the Phillips (1958) hypothesis about the special type of equilibrium, produced by 
limitation on the growth of wave spectral components imposed by gravitational 
instability - surface wave breaking.

The form of the spectra predicted by Phillips (1958) on the basis of this idea

Vs (k,0) = Bk 4 (6) (20)

was later on called a saturation form, and the corresponding range of (k,0) saturation 
range of wind-wave spectra or saturation spectra. As the boundaries of such range in k,0 
plane are not known a priori, no unambiguous conclusions about the shape of the 
ip(k]), ipk2) or /(k) spectra can be drawn even if the function g(0) in (20) (satisfing 
the standard normalization condition fg(0)d 0 = 1) is known, unless one makes some 
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additional assumptions not following from the similarity theory itself, such as for 
instance one utilized by Phillips (1966) who assumed that in (20)

I a,9£9m=l

Ue)= (21)
o at e > em

where 0m corresponds to the dominant wave direction. However to some extent the 
general form of formulae (20) contradicts the data of the most detailed investigation 
of angular energy distribution in the wave spectrum, as obtained by Longnet-Higgins 
et al. (1963), Ewing (1969) and most recently in a comprehensive study of Donelan et 
al. (1985). It seems that k-independence of angular distribution and the lack of 
sensitivity to both wind strength and wind direction (tendency to isotropy), as in (20, 
21), can be observed only for shrotest wave components (see for example Banner et 
al. 1989). Because of this both in Kitaigorodskii et al. (1975) and Kitaigorodskii 
(1983), the physical hypothesis about the saturation or equilibrium spectra was 
formulated directly to the statistical characteristics of wave field, already averaged 
over all directions of wave propagation, i.e., directly to the spectra %(k) or F(k) as it is 
done often in the theory of small scale axsymmetric turbulence. One of the reasons 
why k-independent type of angular distribution, including isotropy, is of particular 
interest in deriving the average (over all angles) wave statistics is due to the fact that 
the very special type of statistical equilibrium in weakly nonlinear field of surface 
gravity waves can be described by particular form of equation (17)

Snl " ° <22>

which is known as wave kinetic equation.

2.4. The forms of equilibrium spectra corresponding to (22) for statistically averaged 
characteristics was first derived by Kitaigorodskii (1983). For isotropic wave field the 
exact analytical solution of (22) was studied by Zakharoff and Filonenko (1964). 
Later on in the series of papers by Zakharoff and Zaslavskii (1982, 1983) it was 
shown that (22) leads to two special forms of Kolmogoroffs type cascade spectra Fk 
(Kitaigorodskii, 1987) and one of them based on action ßux towards low wave numbers 
were successfully applied for the description and parametrization of wave field in the 
case of the so called fully developed waves. We’ll not consider the fully developed wind 
wave spectra as an example of equilibrium spectra leaving the latter name just for range 
of wave numbers (and frequencies) at least larger than the peak wave number kp (or 
frequency C0p).

Finally let us introduce like in Kitaigorodskii (1983) and Hansen et al. (1990) the 
definition what can be called — the dissipation subrange in wind wave spectra. Accord
ing to these authors this is the range of wave numbers k > kg where
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Sn| (k) = 0 (23)

and
Snl <*> • SdissW = 0 fork>^ (24)

Here it is assumed that the wind energy input is negligible near the transitional wave 
number kg and that wave breaking is important only at wave numbers higher than 
the wave number kg of gravitational instability which supposedly is much higher than 
kp, and can depend also on direction 0. The basic role of weak nonlinear interactions 
is then in redistributing energy from the range of kg k kg to new waves with k A 
kp (Kitaigorodskii, 1983, ZaharofTand Zaslavskii, 1982) and to dissipation k 2= kg in 
such a way that nonlinear divergence of energy in the range kp k kg is in balance 
with wind energy input Sin in a stationary wave field (Phillips, 1985). Here by kg it is 
worthwhile to understand the average value kg = J'kg(0)d0, so that angular distribu
tion can weight towards kg and transitional frequency O)g can be related to kg in usual 
way through isotropic dispersion relationship (d)g = (gkg)1 2) (if Doppler shifting is 
not taken into account).

Thus from this definition of the dissipation subrange it follows that in wave number 
(or frequency domain) the subrange have to occur as a more rapid spectral fall of 
compared with one in equilibrium range of wave spectra, and that without the latter there will 
be no dissipation subrange at all if we accept the above introduced terminology. 
According to this terminology Sn](k) — Sjnp.(k) in the equilibrium range of the spectra, 
whereas Sn| — Sin = Sdissjusta par ticular type of statistical equilibrium correspond
ing to the KolmogorofPs type of theory of the inertial subrange of quasy-isotropic 
turbulence, where the dissipation subrange is introduced in high wave number part of 
the spectra due to the direct action of molecular viscosity.

2.5. In the wind wave field the first constructive suggestion about high wave number 
and high frequency part of spectra was made by Phillips (1958). Phillips (1958) idea 
became well known as hypothesis about the saturation of wave components due to 
the limitation imposed on their growth by breaking process. For frequency spectra it 
gives simple and very elegant result

S (co) = ß g2 co'5 (25)

where ß is nondimensional universal constant.
However only after Kitaigorodskii (1983) suggestion to consider (24, 25) as an 

asymptotic form of the disspipation subrange in the quasy-equilibrium wave spectra, it 
becomes clear that Phillips (1958) initial argument must be revisited in favor of the 
existence of an intrinsic “inner scale” of the sea surface on analogy with Kol- 
mogoroffs inner scale in 3-D turbulence which can corespond to the high wave 
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number (high frequency) fall of the equilibrium spectra. However, such inner scales 
appear in wave data analysis as transitional wave number kg (or frequency ((0g), and 
it becomes customary to consider the deviations from new equilibrium form 
(Kitaigorodskii (1983), Phillips (1985) to be associated with gravitational instability 
(wave breaking), but not viscosity and therefore with transition to the dissipation 
subrange in wave field. In the next two sections I’ll discuss the experimental data 
about spatial and temporal statistical characteristics of wind wave field with the 
purpose to indicate such transition and interprete it as a noncontroversial evidence of the existence 
of dissipation subrange in wind wave spectra.

3. Dissipation subrange in wind wave spectra (definitions)
3.a. In 2-1) wavenumber space let us first restrict our attention to wave numbers well 
below those associated with capillary ripples and those directly influenced by viscosi
ty, so that

k « g = (pæ gT,/2) ; k « kv = g1'4 v1'2 (26)

(T-surface tension, v - kinematic viscosity and pw - density of sea water) and also 
well above those k which are associated with strong direct energy input from wind k 
= kin 5= kp, so that

k»kp = W2g’1 (27)

Then we can expect that somewhere in the region (26-27) wind wave field loses its 
directionality (the function kin = kin (0)), must have a clear defined maximum at 
0 = 0m, where 0m coincides with direction of wind, or direction of propagation of 
dominant wind waves. We would assume for moment that there must exist the 
spreading cut off at scales much shorter than kin (where the angular distribution ap
proach isotropy).

3.b. According to Banner (1990) the spreading cut offis still unlikely to occur at k/kp
2.6 (as was initially suggested in Donelan et al. (1985) and is expected to be at 

much shorter scales (Banner et al., 1989). Fig. 2 in Banner (1990) places spreading cut 
off approximately at k/kp ~ 9-10. Even though this number cannot be immediately 
transfered to frequency domain (Doppler shifting), it is useful to remember that it roughly 
gives co/cUp = 3 as lower (in frequency) boundary of the region where wave field loses 
it’s directionality (at least qualitatively).

3.c. If one follows Zaharoff and Zaslavskii (1982, 1983) applications of the theory of 
weakly nonlinear surface gravity waves top the analysis of wind wave data then the 
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case of rather well developed waves must correspond to kp=(2 —4) g/Ua2, Ua-wind- 
speed, with the corresponding region of energy input equal approximately to

k. = (4 - 6) yp—= (2 - 3) k inp ' ' (J p (28)

Thus we can see that in wave number space there is a region

(9-10) kp > (2-3) kp = kln (29)

where inspite of directionality of wave field the nonlinear interactions can still play a 
major role both in redistributing energy between different directions as well as giving 
rise to smaller scale waves. However it must not be forgotten that in this region both 
the directionality and wave age dependence (parametrically at least) can influence 
the description of 2-D wave field characteristics. This was demonstrated in Banner 
(1990) who simply accept Donelan et al. (1985) empirical model of wave spectra with 
their angular distribution extrapolated to high wave numbers.

3.d. The region, described in 3.c is characterized by strong directionality and 
symmetry relative to the direction of propagation of dominant waves (or mean wind 
direction). However (29) can still be called an equilibrium range of wind wave spectra 
contrary to Phillips (1985) and Banner (1990) models, and similarity hypothesis can 
be applied here for statistically averaged characteristics of wave field (according to 
Kitaigorodskii (1983) definition of statistical equilibrium). The boundaries kbound of 
region where inside this equilibrium range dissipation due to the breaking becomes 
important can depend noticeably also on angle, i.e.

(30)

and we’ll use an effective value kg, defined as

(31)

Then the transitional frequency O)g from the nondissipative part of equilibrium range 
to the dissipative part can be defined as

(32)

Such value of O)g (defined through kg) must be close, but not necessarily equal to 
experimentally derived GJ„ as a rapid transitional frequency or beginning of rapid spectral fall 
off on the rear face of frequency spectra, associated with asymptotic approach to 
saturation form (see (38) below).

3.e. The general similarity hypothesis applied to the region
M

r > k > kjn, must be based on the dependence of statistical characteristics of wind 
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wave field on the values of parameters g, k (or co) and £o, where Eo = f£(0)d0 is a 
constant energy flux from the region of energy input through the nondissipative part 
of spectra toward high wave numbers. According to this hypothesis we have 
(Kitaigorodskii, 1983) for such characteristics as energy spectrum Fk and wave action 
spectral density Nk = (o = o(k)-isotopic dispersion relationship) the following 
expressions

Fk = J F (k) dO = t"3 g1'2 (33)

Nk = /N(k) dS-e^kS., (34)

In nondissipative range of wave spectral characteristics (k/kg « 1), the nonlinear 
interactions must play a major role, and because they are cubic in wave amplitude it 
follows (Kitaigorodskii, 1983; Phillips, 1985) that

91 = <t>2 = A (35)

where A is absolute constant, supposedly close to unity. We’ll define here the dissipa
tive subrange as a region where the governing parameters are those that determine 
continuity of the wave surface and therefore asymptotically Fk and Nk becomes inde
pendent on Eo so that

( \
_k_

= k = B k2 9 ( 9)

where B is another absolute constant. The asymptotic prediction (33, 36) corresponds to 
Phillips (1958) initial saturation form of the spectra. Here it is based on the value

kg = Cg/^'3 (37)

where C is another numerical constant not necessarily of order one, because the 
dissipative process associated with wave breaking is not well defined (both physically 
and formally). However it must not be forgotten that in 2-D wave number space some 
of the values of kg for example kg(0max) where 0max coincide with direction of domi
nant waves, can be much smaller than the value kg (37). That is possibly one of the 
reasons why in Banner (1990) model wave number spectral density slice in the domi
nant wave direction have a clear defined range (36) practically int he whole region (29). 
The effect of the modulation of the spectra (33, 36) by orbital peak velocities permits 
Banner (1990) to get W4 form of the frequency spectra close enough to the peak ("7æp 
< 4) (see Fig. 7 in Banner (1990)) with the transition to co’’ form at the values of O)g 
roughly satisfying (32) and equality (Hansen et al., 1990).

(38)
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We will examine the empirical data and methods of determination of the constants 
A,B,C, in next section.

4. Transition to dissipation subrange (experimental data)
4.a. SWOP spectra. Dealing with spatial characteristics it is natural to start with the 
classical SWOP data (Cote et al., 1960). McLeish and Ross (1985) when examining 
the relationships between spatial and frequency spectra for SWOP data have assumed 
that the effect of presence of wind underlying current is evident. According to these 
authors the SWOP results had peak spectral levels well below that of standard fetch 
limited conditions. However according to recalculations of Kitaigorodskii (1984) the 
normalized spectral densities Fk have a clear defined k 2 region. In the spectrum %(k) 
a transition to k 1 form occur at kg = 3,2kp and kg = 0,2m’1 (which corresponds to 
rather big value ofXg ~ 30m. The latter value justifies the neglect of the effect Doppler 
shifting by permanent drift currents even as strong as 1 m/sec and leads to the value of 
transitional frequency tog — 1.78cop which is close (but a little bit low) for usually 
observed transition to to ’ region in frequency spectra at (Dg ~ , (with kp ~ 2^-4
(Dg ~ 1.78 O)p ~ 2.5-3.7 (j^). Such low value of (Dg can be explained also by the neglect 
in doppler shifting by peak frequency orbital velocities, (Kitaigorodskii et al., 1975) 
because the equilibrium region ofk’' 2 in SWOP spectra occur at k/kp 1.3
1.14) which practically excludes the peak enhancement region (in the frequency range 
77“ < 1-3). The latter fact leads Banner (1990) to conclusion that SWOP spectra 
lp(k,0m) ~ 0.3 X 10'4k'4, which are still the dissipative form of the spectra for enough low 
wave numbers, can easily give (O’4 form offrequency spectra at ll) æp<3 (due to modula
tion by peak orbital velocities), even though the spectra range l”p<3 is relatively 
unaffected by Doppler shifting with orbital velocities (this was established for k , but 
not k 2 form). Thus we can consider SWOP integrated (reduced) spectra FK (or 
X(k)), as an example of fetch limited spectra with k’' 2 nondissipative part of equilib
rium with the rapid transition to the dissipation subrange at kg = 3,2kp, or with k|g ’* ~ 
1.8. With wind speed for SWOP 9 m/sec. the kg = 1.8 pleads to ~ 4, which is in 
much better agreement with observations by Kitaigorodskii (1986, 1987) and Hansen 

k U2 •et al. (1990), than the value of ~ 2.5-3.7, which were based on assumption that 
SWOP spectra is closed to fully developed waves, which in reality it is not kp > (2 — 4) 
(T.. (see Table 1). Therefore, we can conclude that SWOP spectra if being considered 
as fetch growth spectra, gives acceptable values for transition to dissipative subrange 
both in wave number and frequency domainlf).

4.b. The recent stereophotogrammetric analysis (Banner et al., 1989) produce the 
results which according to their authors don't support the wave number dependence 
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predicted by the equilibrium spectra for the wavelength range 0.2-1.6m, inspite of the 
fact that those wave lengths appear to have no preferred directions. In particular, the 
correlation with the wind direction is very low (only fine scale structure X < 0.2m, 
seems to have much stronger visual correlation with wind direction).

Because the whole spectral range of wave lengths was not covered by 
stereophotoanalysis in this work, we have decided to more carefully examine the data 
reported by Banner et al. (1989), with the purpose to check the possibility to see the 
transition from equilibrium form of the spatial spectra to the dissipation subrange in the 
same way as it was done by us (Kitaigorodskii, 1984) with SWOP data. The range of 
key parameter — covered by Banner et al. (1989) was (1,75-100)-10 . Wind speeds 
were from 5.5 to 13.3m/sec. With average value of drag coefficient 10'3, this corres- 
ponds to the range of nondimensional wave number yy^ = 1.6-90 which is basically 
the range of wave numbers on the rear face of relatively well developed waves (k>kp). 
The Fig. 4 in Banner et al. (1989) summarize the results of four experiments and was 
interpreted as a proof of a saturation in this range of scales. (Within the 95% confi
dence limits, there is no observational support for the linear dependence on Ux 
implied by equilibrium spectra. While relating the wind speed at 54m (at oil plat
form) to the surface friction velocity ux is not straightforward, we still consider the 

k U 2 . .values ~g“4— (2 — 90) to be reliable estimates of the conditions of the open sea wind 
waves, measured in Banner et al. (1989). A closer look at the data presented in Fig. 4 
leads us to the following conclusions. In exp. 3, whose conditions are similar to
Hansen et al. (1990) there is an evidence of more rapid spectral cut off at approxi
mately ——~ 2.10'“. We would like to interpret this as a transition from equilibrium 
k 7 2 to dissipation subrange. For wind speed 5,5m/sec the corresponding Ux ~ 20-22 
cm/sec (Kitaigorodskii and Donelan, 1984), and that gives us for transitional wave 
number kg the values ^y^~ ~ 9-12 or yf^ ~ 3-4 which is not far from the transitional 
characteristics reported by Kitaigorodskii (1987), Hansen et al. (1990).

In exp. 4 with wind speed 13, 3 m/sec the transitional wave number 'yy^ is as high as 
(5-6) 10, (this number was also picked up by us from Fig. 4 in Banner et al., 1989), 
which leads, with drag coefficient 1.5 • 10'3, to the value ~ 31-40 and thus y^ ~ 
5.5-6.3 which is noticeably higher than in exp. 3. However, the wave age in exp. 4 is 
about twice smaller than in exp. 3, which indicated that transitional wavenumber
and frequency moves to lower value as waves developed in agreement with 
Kitaigorodskii (1983) and Hansen et al. (1991). Also dominant wave period in exp. 3 
Td = 6.6 sec. leads to the value yy^ ~ 0.16 « 3-4, which means that in this
case there is enough space lor equilibrium k_/ 2 spectra still above the peak enhance
ment region in exp. 3. The same can be roughly said about the exp. 4, where Td = 5.5 
sec leads to cod ~ 1.54 -y which is still at least three times smaller than the values of 
(Dg, so in exp. 4 there is also indirect evidence for existence an equilibrium k'7/2 range 
with transition to the dissipation subrange. In both cases O)d = y == (Op (Banner, 
private communication).
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Conditions of exp. 2 was characterized by strong winds and white capping and 
that's possibly why in fig. 4 of Banner et al. (1984) for experiment 2 there is no 
indication of transition, since dissipation subrange can occupy the whole range of 
observed wavenumbers (as well as in exp. 1). Indeed the description of experimens in 
Banner et al. (1989) (see Table 1 and 2) indicates that only exp. 3 and 4 corresponds 
to relatively steady conditions, and they both show some evidence of existence transition 
to dissipation subrange, which does not disagree with calculations in Hansen et al. 
(1990) about the movement of CD^ toward lower frequency with wave growth (either 
with fetch or duration).

4.c. In Phillips (1985) paper on equilibrium spectra, one of the sets of experimental data 
which were used to prove the existence of wind-dependent statistical equilibrium, 
where recent field measurements by Tang & Shemdin (1983) of the frequency spectra 
of slope at a fixed point. Their results clearly indicate that the frequency spectra of 
slope in the windward direction Sh is proportional to friction velocity and flat, 
independent of co, provided the frequency is sufficiently smaller than those influenced 
by convective effects of the larger waves and currents. The Fig. 4 in Phillips (1985) of 
S|i((D) — frequency spectra of slope in the upwind, downwind direction, clearly indi
cated the lower frequency part of Sh (co) independent on co. However it is exactly the 
data on this figure, which we’ll try now, as before, to interpret as noncontroversial 
evidence of transition to dissipation subrange in equilibrium spectra. The latter at fre
quencies co between 2 rad sec.’1 and ~ 6 rad. sec’1 for slope according to (33-35) is 
independent on co.

S^(co) = S11 (co) + S22 (co) = A ug’1 (39)

At higher frequencies where Doppler shifting effects can be significant, and interpre
tation is difficult, the measured spectra clearly don’t follow the form (39) but decrease 
approximately as co’1 (see Fig. 4 in Phillips (1985)), what can be interpreted as 
another assymptotic regime (36), corresponding to dissipation subrange. Over the low 
frequency range there is a good deal of sampling error, but not much systematic trend 
in the spectral levels below about 7 rad. sec’1. The spectral densities measured at this 
range (39) are generally consistent with the value of Kitaigorodskii constant A, 
estimated in Kitaigorodskii (1983). Also Tang and Shemdin (1983) found that the 
downwind and transverse mean square slopes were about equal (isotropy) in cases of 
a wind wave field with a single well defined peak. (But the most interesting feature of 
Fig. 4 - the existence of transition to dissipation subrange was not ever mentioned in 
Phillips (1985) who argued that kinematic effects due to tidal currents and peak wave 
orbital velocities becomes serious at frequencies about 15 rad/sec, as well as dynamical 
limitations (capillarity and influence of drift currents). However the transition from 
frequency independent flat part of slope spectra occur in all spectra in Fig. 4 at fre
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quencies well below 15 rad/sec. Here are the main characteristics of the transition to 
dissipation subrange derived from four curves on Fig. 4 in Phillips (1985).

Curve 7 - ux ~ 11 cm/sec and corresponding wind speed are in the range 2.2-3.3 
m/sec. with value of O)g = 15 rad/sec (!) locates the transition to the dissipation subrange 
at ~ 3.36-5.05, which is very close to cog ~ 4 the best estimate of (Og according 
to Kitaigorodskii (1987), Hansen et al. (1990). However, we’ll discuss the value O)g = 
15 rad/sec in curve 1 in more detail below.

Curve 2 - ux ~ 27 cm/sec and corresponding wind speed (8.1-7.1 m/sec) with 
observed value of = 5.8-7.0 rad/sec locates the transition to the dissipation subrange at 
"’-l, ' ~ 4.2-4.8, again consistent with all previous estimates.

Curve 3 - ux ~ 28 cm/sec and corresponding wind 8.15-7.10 m/sec with observed 
value of cog = 7.0 rad/sec'1 locates the transition to the dissipation subrange at ~ 
5.0-5.82, which is a little bit higher value then the usually accepted 4.0.

Curve 4- ux ~ 45 cm/sec and corresponding wind speed in the range 11.8-14.5 with 
observed values of 0)g = 5.0-5.5 rad/sec locates the transition to the dissipation sub
range at ~ 6.0-8.1 which is now noticeably higher then the results from Curves I 
and 2. To explain this trend in the movement of (from curve 1) towards high 
frequencies (to curve 4) we have examined the original data by Tang and Schemdin 
(1983).

First of all we found that for Curve 1 the choice of(Dg = 15 rad./sec. is probably not 
well justified. The more close to reality will be the choice of cog — 6 rad./sec., which 
we’ll lead to ~ 2.14. The latter value make the trend in (from curve 1) to 
curve (4) even more visible. In Table 1 we present the summary of lang and 
Shemdin (1983), Banner et al. (1989) and SWOP results together with results 
summarized in Table 1 of Hansen et al. The clear evidence of the decrease of cog with 
the movement of peak frequency region towards low frequencies is evident. This is a 
very intersting and important support of the ideas of Kitaigorodskii (1983) about 
existence of dissipation subrange in wind wave spectra.

4.d. Actually usual approach in estimating some transitional regime is limited by 
getting some typical average value of . The latter is true also for the data analysis 
presented in Leykin and Rozenberg (1984) which we’ll discuss in 4d. We also analy
zed the data of Birch, Ewing (1986). In most of cases their transitional frequency 
(D^ = was less than which makes their study not suitable for defining the 
dissipation subrange. By the way the old Burling (1959) data analyzed by Phillips 
(1958) and Kitaigorodskii (1980), even though in principle looking very convincing 
in terms of co'3 region, but on average Burling (1959) data have a range of '/A ~ 
0.157-0.23 being very close to (üj, in their case, and thus also made them nonsuitable 
for determination of dissipation subrange. Even the data presented by Kimmo K. 
Kahma and Charles J. Calken (unpublished), which for “grand” average of dimen- 
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sionless spectra give clear vision of dimensionless frequency ' about 5 as a possible 
transition to tt)’5 region, we have found not adequate for searching on dissipation 
subrange because for four (out of 7) groups of the spectra in Lake Ontario where 
“transition” was observed (7,6.5,3) on fig. 5 of their paper the corresponding ratios of 
7^ were equal to 1.15, 1.25, 1.14, 1.2, i.e., all of them in peak enhancement region! 
However Fig. 6, 7 in their work is important for finding grand average value — 5. 
The frequencies below 1.2 cop has been excluded from the beginning and thus the 
grand averaged transitional value = 5 is reliable.

4.e. In the Leykin and Rosenberg (1984) 20 spectra was chosen to characterize the 
rather developed waves in the range of wind speeds 3,5-13.5 m/sec. The measured 
spectra within the frequency range from 2.4 to 7.2 Hz. were analyzed with the 
purpose to find empirical description of the rear faces of the spectra. It was found that 
for all of the spectra in the range, 1,2 qy 3.2 i.e., outside of peak enhancement region, 
there is transition from wind dependent co’1 form to co-' form of saturation. 4o 
interpret this transition as a transition to the dissipation subrange we recalculate below 
yy values into 'yy21 values, by assuming again kp = (2-4) -^-2. This leads to (Dp = (1.4- 
2) "~uä and with cog — 3,2 C0p (Fig. 9 in Leykin and Rosenberg (1984)) to "y ~ 4.48 ~ 
6.4 with average value - — 5,4, which is not to far from result of determination of 
the transition to the dissipation subrange reported by Hansen et al. (1990), but a 
little bit larger. In this range of frequencies, Doppler shifting by peak orbital velocities 
as well as permanent drift current are not enough important, so that we can consider 
the Leykin and Rozenberg (1984) result also as indirect proof of existence of the 
transition from nondissipative form of equilibrium k_/ 2 spectra, (yy 10), to the 

k . ... p .dissipation subrange (~jyp 10) with broad angular distribution. Thus the interpreta
tion of Leykin and Rosenberg frequency spectra (1984) can be done basically in the 
similar way as in Hansen et al. (1990), i.e., in agreement with asymptotic predictions 
(33-36) of the theory of non-dissipative and dissipative parts of equilibrium spectra.

4.f. In a recent paper by Banner (1990) the emphasis was on the empirical most detailed 
description of fetch limited wave growth spectra given by Donelan et al. (1985), hence
forth referred to as DHH. In latter work the rear face of frequency spectra were 
successfully described by co"1 wind dependent (linearly) form in the range of 1.5 yy 
< 3 i.e., excluding the peak enhancement region but also in the region where Doppler 
shifting effects by currents and peak orbital velocities are still not important. How
ever, the DHH data which covered practically all stages of wave growth doesn't show 
a transition to dissipation subrange, which according to all previously analyzed material 
must occur at smaller than yy — 3 scales. This transition was not even considered by 
Banner (1990) and he did not interpret this region as an equilibrium of the type (33- 
35). That is why instead of this, Banner (1990) choose pure empirical canonical form of
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the spectra ip(k,0) coresponding to DHH data with angular spreading distribution 
for -y 2.6 (spreading cutoff doesn’t occur at as low as Tp ~ 2-6 (q^ ~ 1-6), 
extrapolated to much shorter scales, consistent with the broad directional distribution 
observed by Banner et al. (1989). However, according to the latest views by Donelan 
(cited in Banner et al. 1989) see also Fig. (3a-3b) in Banner (1990), there is a transition 
to the most rapid spectrall falloffin Donelan data (private communication), very similar 
to one observed by Longuet — Higgins et al. (1963) as a deviations from tn'4 form for 
frequencis 0)/2Jt > 1 HZ. In Banner (1990) this fact was not interpreted as a transition 
to the dissipation subrange (Kitaigorodskii, 1983; 1987), but rather as a direct conse
quence of DHH spectral form extrapolated to high wavenumbers with spreading cutoff 
occuring not before 10. However, DHH spectra in the range of, 1.5 < ^ < 3 
can be consistent with equilibrium form (33-35) with energy flux Eo being dependent on 
wave age fé in the following way

(40)

where in Kitaigorodskii (1983; 1986) notations

e0 = mVa3 ; m = 0.006
(2A)3

(41)

where the Kitaigorodskii constant A is of order one (Kitaigorodskii, 1983) (A — 0.55- 
0.22). The fact that the energy flux Eo is increasing with wave growth (y^) is in agreement 
with the results of direct calculations of Sn| in wave generation models. Thus we can 
argue that DHH results together with Banner (1990) additional information are not 
inconsistent with our hypothesis about the existence of equilibrium form (33-35) with 
the transition to the dissipation subrange, as it was observed in Hansen et al. (1990). 
According to the latter work the average value ofau in equilibrium spectra (33-35, 41) is 
equal to 4.4.10-3 which together with observed transition to the dissipation subrange at

— 2.7 leads to the average value of transitional frequency .cog — 6.1 -für This is 
higher than cog — 4 qYa probably due to the Doppler shifts effects, but still with 
observed range of^2^ — 1-3, roughly corresponds to 2= 3 in good agreement with 

Donelan et al. (1985).

4.g. When deriving the expression (36) corresponding to Phillips (1958) saturation 
form, we considered the asymptotic situation, corresponding to indefinitely large 
values of(indefinitely large values ofk or Eo), where the statistical characteristics 
of the wave field are determined solely by the process of wave breaking. Therefore the 
magnitude of the spectrum in the dissipation subrange (36), represents according to
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Phillips (1958) an upper limit of Fk, dictated by the requirement ofcrest attachment, 
generally speaking, we cannot in principle disregard the possibility (because of the 
very nature of asymptotic arguments) that for (eo —> (1 oo, kkg —> oo) the values of 
Fk and Nk (and therefore S(to)) continue to depend no matter how slightly on Eo, so 
that instead of (33-36) we have

(42)

(43)

(44)

where G)g and kg are given by expressions (32,37), and p is power exponent, such that 
to satisfy the predictions (35,36) it must be

(45)

By replacing Eo according to (40) and kg (according to (37)), (42-44) reduced to the 
usual wind dependent similarity form of the wind wave spectra (Kitaigorodskii 
(1983, 1985). Howeever, the value of p cannot be derived from dimensional consider
ations only, and the frequency spectra of the type of (44) was first analyzed by 
Barenblatt and Leykin (1981), who were looking for the variations of p with the stage 
of wave development (or in their terminology with the nondimensional parameter A„ = 

where Åp is peak wave length (kp = ~p). According to their analysis (Fig. 18) the 
average value of p is close to 0 (p — 0.4 ± 0.4) in the range of A„ — 3-8, which 
corresponds to the range of » 1.25-2.05. The latter is very close to conditions pf 
rather well developed waves, characterized by kp = (2 — 4) (see section 3). Thus 
our interpretation of the data presented in Barenblatt and Leykin (1981) and Leykin 
and Rosenberg (1984) are that in the region of 1.3 < Gj/cop < 3 (i.e., outside of peak 
enhancement region and Doppler shifting effetets) the frequency spectra are close to 
the equilibrium form (35) (p ~ 0) with the possible transition to dissipation subrange 
(36), occuring only at G)g 5= 3cop (Leykin and Rosenberg, 1984) or approximately at 
cog = 3.75-6.0 -fy which is close to what was observed by all others including DHH. 
Fhe similar approach was used for 1-1) and 2-1) spatial spectra by Banner et al. (1989) 
whose data we have analyzed before. Banner et al. (1989) used expression for 1-D 
spectra of the form

(i = 1,2);(k = k1,k2)
g

(46) 
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where y = (1/2-p) was found also close to 0 (actually y = 0.09 ± 0.09 at the 95% 
confidence limit). Thus Banner et al. (1989) confirm the asymptotic predictions 
corresponding to p = 1/2 embracing wind dependent approximation to the observed 
one-dimensional and two-dimensional wave number spectra, with some evidence of 
existence of the transition to the dissipation subrange (see sections 3,4). The most 
important results of data analysis we present in the Fable 1, where we summarize our 
determinations of the transition to the dissipation subrange according to the different 
authors. The future more complete studies of the wave characteristics hopefully 
permit to check the results presented in Table 1.

5. Conclusion
We can conclude that all existing data about the frequency and spatial characteristics 
of wind wave field are not inconsistent with our assumption (Kitaigorodskii, 1983) 
about the existence of the transition to the dissipation subrange at high wave numbers 
and frequencies. Moreover, it appears that in most cases such transition is definitely associ
ated also with existence of equilibrium energy cascade pattern in wind wave spectra at the 
scales larger than the transitional scale Xg = jrv
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